Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contact vs bulk effects in N-semi-insulating-N and P-semi-insulating-P diodes

Identifieur interne : 001017 ( Main/Repository ); précédent : 001016; suivant : 001018

Contact vs bulk effects in N-semi-insulating-N and P-semi-insulating-P diodes

Auteurs : RBID : Pascal:13-0108797

Descripteurs français

English descriptors

Abstract

We analyse the charge transport mechanism in semi-insulating (SI) materials for N-SI-N and P-SI-P structures. The SI layers are large band gap semiconductors obtained by deep levels compensation of residual shallow donors or acceptors. A preceding theory is extended to the case of two, donor or acceptor, deep compensating levels [1]. The conduction mechanism is complex: ambipolar transport, heavy recombination, space charge effect and we show that the current is controlled by both bulk and interface effects at the reverse biased N-SI or P-SI junction. We develop a simple model, without the usual assumption of space charge neutrality, valid up to the beginning of one carrier space charge current. We show that a linear relation exists between the bulk excess free carrier densities and that depending on the value of a quantity M, given as a function of the deep levels electrical parameters, energy position, concentration and capture cross sections, as well as the dopants concentrations, the conduction mechanism is either contact controlled showing a pronounced current saturation effect or bulk controlled with one and for long sample, two, quasi Iinear J-Va relationship. Numerical modelisations of the drift-diffusion transport model confirm these analytical results for the case of one or two compensating deep levels. GaAs (SI) or InP (SI) layers are used for their high resistivity and insulating properties in FET technology, in buried heterostructures, diode laser and in radiation detectors technologies. These results are of importance for the interpretation of conductivity and Hall Effect measurements and explain the parasitic side-gating effect in GaAs or InP MESFET's.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0108797

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Contact vs bulk effects in N-semi-insulating-N and P-semi-insulating-P diodes</title>
<author>
<name sortKey="Manifacier, J C" uniqKey="Manifacier J">J. C. Manifacier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Université Montpellier II - Sciences et Techniques du Languedoc, Place Eugene Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0108797</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0108797 INIST</idno>
<idno type="RBID">Pascal:13-0108797</idno>
<idno type="wicri:Area/Main/Corpus">001177</idno>
<idno type="wicri:Area/Main/Repository">001017</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1101</idno>
<title level="j" type="abbreviated">Solid-state electron.</title>
<title level="j" type="main">Solid-state electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambipolar diffusion</term>
<term>Analytical method</term>
<term>Binary compound</term>
<term>Bulk effect</term>
<term>Buried heterostructures</term>
<term>Buried laser</term>
<term>Carrier current</term>
<term>Charge carrier density</term>
<term>Charge transport</term>
<term>Current control</term>
<term>Deep level</term>
<term>Diode</term>
<term>Drift mobility</term>
<term>Electrical characteristic</term>
<term>Field effect transistor</term>
<term>Free carrier</term>
<term>Hall effect</term>
<term>Impurity density</term>
<term>Indium phosphide</term>
<term>Insulating material</term>
<term>Laser beam</term>
<term>Parasitic behavior</term>
<term>Radiation detector</term>
<term>Residual impurity</term>
<term>Si junctions</term>
<term>Silicon</term>
<term>Space charge</term>
<term>Wide band gap semiconductors</term>
<term>n type semiconductor</term>
<term>p type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet volume</term>
<term>Diode</term>
<term>Transport charge</term>
<term>Niveau profond</term>
<term>Impureté résiduelle</term>
<term>Diffusion ambipolaire</term>
<term>Charge espace</term>
<term>Commande courant</term>
<term>Courant porteur</term>
<term>Porteur libre</term>
<term>Densité porteur charge</term>
<term>Caractéristique électrique</term>
<term>Concentration impureté</term>
<term>Mobilité dérive</term>
<term>Méthode analytique</term>
<term>Transistor effet champ</term>
<term>Laser enterré</term>
<term>Faisceau laser</term>
<term>Détecteur rayonnement</term>
<term>Effet Hall</term>
<term>Comportement parasite</term>
<term>Isolant</term>
<term>Silicium</term>
<term>Semiconducteur type n</term>
<term>Semiconducteur type p</term>
<term>Semiconducteur bande interdite large</term>
<term>Jonction silicium</term>
<term>Phosphure d'indium</term>
<term>Composé binaire</term>
<term>Hétérostructure enterrée</term>
<term>0707D</term>
<term>InP</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Isolant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We analyse the charge transport mechanism in semi-insulating (SI) materials for N-SI-N and P-SI-P structures. The SI layers are large band gap semiconductors obtained by deep levels compensation of residual shallow donors or acceptors. A preceding theory is extended to the case of two, donor or acceptor, deep compensating levels [1]. The conduction mechanism is complex: ambipolar transport, heavy recombination, space charge effect and we show that the current is controlled by both bulk and interface effects at the reverse biased N-SI or P-SI junction. We develop a simple model, without the usual assumption of space charge neutrality, valid up to the beginning of one carrier space charge current. We show that a linear relation exists between the bulk excess free carrier densities and that depending on the value of a quantity M, given as a function of the deep levels electrical parameters, energy position, concentration and capture cross sections, as well as the dopants concentrations, the conduction mechanism is either contact controlled showing a pronounced current saturation effect or bulk controlled with one and for long sample, two, quasi Iinear J-V
<sub>a</sub>
relationship. Numerical modelisations of the drift-diffusion transport model confirm these analytical results for the case of one or two compensating deep levels. GaAs (SI) or InP (SI) layers are used for their high resistivity and insulating properties in FET technology, in buried heterostructures, diode laser and in radiation detectors technologies. These results are of importance for the interpretation of conductivity and Hall Effect measurements and explain the parasitic side-gating effect in GaAs or InP MESFET's.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1101</s0>
</fA01>
<fA03 i2="1">
<s0>Solid-state electron.</s0>
</fA03>
<fA05>
<s2>80</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Contact vs bulk effects in N-semi-insulating-N and P-semi-insulating-P diodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MANIFACIER (J. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université Montpellier II - Sciences et Techniques du Languedoc, Place Eugene Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>45-54</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888</s2>
<s5>354000182577830100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>52 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0108797</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid-state electronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We analyse the charge transport mechanism in semi-insulating (SI) materials for N-SI-N and P-SI-P structures. The SI layers are large band gap semiconductors obtained by deep levels compensation of residual shallow donors or acceptors. A preceding theory is extended to the case of two, donor or acceptor, deep compensating levels [1]. The conduction mechanism is complex: ambipolar transport, heavy recombination, space charge effect and we show that the current is controlled by both bulk and interface effects at the reverse biased N-SI or P-SI junction. We develop a simple model, without the usual assumption of space charge neutrality, valid up to the beginning of one carrier space charge current. We show that a linear relation exists between the bulk excess free carrier densities and that depending on the value of a quantity M, given as a function of the deep levels electrical parameters, energy position, concentration and capture cross sections, as well as the dopants concentrations, the conduction mechanism is either contact controlled showing a pronounced current saturation effect or bulk controlled with one and for long sample, two, quasi Iinear J-V
<sub>a</sub>
relationship. Numerical modelisations of the drift-diffusion transport model confirm these analytical results for the case of one or two compensating deep levels. GaAs (SI) or InP (SI) layers are used for their high resistivity and insulating properties in FET technology, in buried heterostructures, diode laser and in radiation detectors technologies. These results are of importance for the interpretation of conductivity and Hall Effect measurements and explain the parasitic side-gating effect in GaAs or InP MESFET's.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Effet volume</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Bulk effect</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Efecto volumen</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Diode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Diode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Diodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Transport charge</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Charge transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Niveau profond</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Deep level</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Nivel profundo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Impureté résiduelle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Residual impurity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Impureza residual</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Diffusion ambipolaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ambipolar diffusion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Difusión ambipolar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Charge espace</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Space charge</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Carga espacio</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Commande courant</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Current control</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Control corriente</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Courant porteur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Carrier current</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Corriente portadora</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Densité porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Charge carrier density</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Concentración portador carga</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Mobilité dérive</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Drift mobility</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Movilidad deriva</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Transistor effet champ</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Field effect transistor</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Transistor efecto campo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Laser enterré</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Buried laser</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Láser enterrado</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Faisceau laser</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Laser beam</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Haz láser</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Détecteur rayonnement</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Radiation detector</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Detector rayo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Effet Hall</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Hall effect</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Efecto Hall</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Comportement parasite</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Parasitic behavior</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Conducta parásito</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Isolant</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Insulating material</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Aislante</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Semiconducteur type n</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>n type semiconductor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Semiconductor tipo n</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Semiconducteur type p</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>p type semiconductor</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Semiconductor tipo p</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Jonction silicium</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Si junctions</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Hétérostructure enterrée</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Buried heterostructures</s0>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>084</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001017 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001017 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0108797
   |texte=   Contact vs bulk effects in N-semi-insulating-N and P-semi-insulating-P diodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024